翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Line graphs of hypergraphs : ウィキペディア英語版
Line graph of a hypergraph
The line graph of a hypergraph is the graph whose vertex set is the set of the hyperedges of the hypergraph, with two hyperedges adjacent when they have a nonempty intersection. In other words, the line graph of a hypergraph is the intersection graph of a family of finite sets. It is a generalization of the line graph of a graph.
Questions about line graphs of hypergraphs are often generalizations of questions about line graphs of graphs. For instance, a hypergraph whose edges all have size ''k'' is called ''k ''-uniform. (A 2-uniform hypergraph is a graph.). In hypergraph theory, it is often natural to require that hypergraphs be ''k''-uniform. Every graph is the line graph of some hypergraph, but, given a fixed edge size ''k'', not every graph is a line graph of some ''k''-uniform hypergraph. A main problem is to characterize those that are, for each ''k'' ≥ 3.
A hypergraph is linear if each pair of hyperedges intersects in at most one vertex. Every graph is the line graph, not only of some hypergraph, but of some linear hypergraph .
==Line graphs of ''k''-uniform hypergraphs, ''k'' ≥ 3==

characterized line graphs of graphs by a list of 9 forbidden induced subgraphs. (See the article on line graphs.) No characterization by forbidden induced subgraphs is known of line graphs of k-uniform hypergraphs for any ''k'' ≥ 3, and showed there is no such characterization by a finite list if ''k'' = 3.
characterized line graphs of graphs in terms of clique covers. (See Line Graphs.) A global characterization of Krausz type for the line graphs of ''k''-uniform hypergraphs for any ''k'' ≥ 3 was given by .

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Line graph of a hypergraph」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.